623 research outputs found

    Camera-based in-process quality measurement of hairpin welding

    Get PDF
    The technology of hairpin welding, which is frequently used in the automotive industry, entails high-quality requirements in the welding process. It can be difficult to trace the defect back to the affected weld if a non-functioning stator is detected during the final inspection. Often, a visual assessment of a cooled weld seam does not provide any information about its strength. However, based on the behavior during welding, especially about spattering, conclusions can be made about the quality of the weld. In addition, spatter on the component can have serious consequences. In this paper, we present in-process monitoring of laser-based hairpin welding. Using an in-process image analyzed by a neural network, we present a spatter detection method that allows conclusions to be drawn about the quality of the weld. In this way, faults caused by spattering can be detected at an early stage and the affected components sorted out. The implementation is based on a small data set and under consideration of a fast process time on hardware with limited computing power. With a network architecture that uses dilated convolutions, we obtain a large receptive field and can therefore consider feature interrelation in the image. As a result, we obtain a pixel-wise classifier, which allows us to infer the spatter areas directly on the production lines

    Towards Global People Detection and Tracking using Multiple Depth Sensors

    Get PDF

    Calcium and cell fate preface.

    Get PDF

    Ischemic preconditioning attenuates portal venous plasma concentrations of purines following warm liver ischemia in man

    Get PDF
    Background/Aims: Degradation of adenine nucleotides to adenosine has been suggested to play a critical role in ischemic preconditioning (IPC). Thus, we questioned in patients undergoing partial hepatectomy whether (i) IPC will increase plasma purine catabolites and whether (ii) formation of purines in response to vascular clamping (Pringle maneuver) can be attenuated by prior IPC. Methods: 75 patients were randomly assigned to three groups: group I underwent hepatectomy without vascular clamping; group II was subjected to the Pringle maneuver during resection, and group III was preconditioned (10 min ischemia and 10 min reperfusion) prior to the Pringle maneuver for resection. Central, portal venous and arterial plasma concentrations of adenosine, inosine, hypoxanthine and xanthine were determined by high-performance liquid chromatography. Results: Duration of the Pringle maneuver did not differ between patients with or without IPC. Surgery without vascular clamping had only a minor effect on plasma purine transiently increased. After the Pringle maneuver alone, purine plasma concentrations were most increased. This strong rise in plasma purines caused by the Pringle maneuver, however, was significantly attenuated by IPC. When portal venous minus arterial concentration difference was calculated for inosine or hypoxanthine, the respective differences became positive in patients subjected to the Pringle maneuver and were completely prevented by preconditioning. Conclusion: These data demonstrate that (i) IPC increases formation of adenosine, and that (ii) the unwanted degradation of adenine nucleotides to purines caused by the Pringle maneuver can be attenuated by IPC. Because IPC also induces a decrease of portal venous minus arterial purine plasma concentration differences, IPC might possibly decrease disturbances in the energy metabolism in the intestine as well. Copyright (C) 2005 S. Karger AG, Basel

    Efficient Interpolation for the Theory of Arrays

    Full text link
    Existing techniques for Craig interpolation for the quantifier-free fragment of the theory of arrays are inefficient for computing sequence and tree interpolants: the solver needs to run for every partitioning (A,B)(A, B) of the interpolation problem to avoid creating ABAB-mixed terms. We present a new approach using Proof Tree Preserving Interpolation and an array solver based on Weak Equivalence on Arrays. We give an interpolation algorithm for the lemmas produced by the array solver. The computed interpolants have worst-case exponential size for extensionality lemmas and worst-case quadratic size otherwise. We show that these bounds are strict in the sense that there are lemmas with no smaller interpolants. We implemented the algorithm and show that the produced interpolants are useful to prove memory safety for C programs.Comment: long version of the paper at IJCAR 201

    SMT-based Model Checking for Recursive Programs

    Full text link
    We present an SMT-based symbolic model checking algorithm for safety verification of recursive programs. The algorithm is modular and analyzes procedures individually. Unlike other SMT-based approaches, it maintains both "over-" and "under-approximations" of procedure summaries. Under-approximations are used to analyze procedure calls without inlining. Over-approximations are used to block infeasible counterexamples and detect convergence to a proof. We show that for programs and properties over a decidable theory, the algorithm is guaranteed to find a counterexample, if one exists. However, efficiency depends on an oracle for quantifier elimination (QE). For Boolean Programs, the algorithm is a polynomial decision procedure, matching the worst-case bounds of the best BDD-based algorithms. For Linear Arithmetic (integers and rationals), we give an efficient instantiation of the algorithm by applying QE "lazily". We use existing interpolation techniques to over-approximate QE and introduce "Model Based Projection" to under-approximate QE. Empirical evaluation on SV-COMP benchmarks shows that our algorithm improves significantly on the state-of-the-art.Comment: originally published as part of the proceedings of CAV 2014; fixed typos, better wording at some place

    RAGE mediates S100A4-induced cell motility via MAPK/ERK and hypoxia signaling and is a prognostic biomarker for human colorectal cancer metastasis

    Get PDF
    Survival of colorectal cancer patients is strongly dependent on development of distant metastases. S100A4 is a prognostic biomarker and inducer for colorectal cancer metastasis. Besides exerting intracellular functions, S100A4 is secreted extracellularly. The receptor for advanced glycation end products (RAGE) is one of its interaction partners. The impact of the S100A4-RAGE interaction for cell motility and metastasis formation in colorectal cancer has not been elucidated so far. Here we demonstrate the RAGE-dependent increase in migratory and invasive capabilities of colorectal cancer cells via binding to extracellular S100A4. We show the direct interaction of S100A4 and RAGE, leading to hyperactivated MAPK/ERK and hypoxia signaling. The S100A4-RAGE axis increased cell migration (P<0.005) and invasion (P<0.005), which was counteracted with recombinant soluble RAGE and RAGE-specific antibodies. In colorectal cancer patients, not distantly metastasized at surgery, high RAGE expression in primary tumors correlated with metachronous metastasis, reduced overall (P=0.022) and metastasis-free survival (P=0.021). In summary, interaction of S100A4-RAGE mediates S100A4-induced colorectal cancer cell motility. RAGE by itself represents a biomarker for prognosis of colorectal cancer. Thus, therapeutic approaches targeting RAGE or intervening in S100A4-RAGE-dependent signaling early in tumor progression might represent alternative strategies restricting S100A4-induced colorectal cancer metastasis

    Tinto: Multisensor Benchmark for 3-D Hyperspectral Point Cloud Segmentation in the Geosciences

    Get PDF
    The increasing use of deep learning techniques has reduced interpretation time and, ideally, reduced interpreter bias by automatically deriving geological maps from digital outcrop models. However, accurate validation of these automated mapping approaches is a significant challenge due to the subjective nature of geological mapping and the difficulty in collecting quantitative validation data. Additionally, many state-of-the-art deep learning methods are limited to 2-D image data, which is insufficient for 3-D digital outcrops, such as hyperclouds. To address these challenges, we present Tinto, a multisensor benchmark digital outcrop dataset designed to facilitate the development and validation of deep learning approaches for geological mapping, especially for nonstructured 3-D data like point clouds. Tinto comprises two complementary sets: 1) a real digital outcrop model from Corta Atalaya (Spain), with spectral attributes and ground-truth data and 2) a synthetic twin that uses latent features in the original datasets to reconstruct realistic spectral data (including sensor noise and processing artifacts) from the ground truth. The point cloud is dense and contains 3242964 labeled points. We used these datasets to explore the abilities of different deep learning approaches for automated geological mapping. By making Tinto publicly available, we hope to foster the development and adaptation of new deep learning tools for 3-D applications in Earth sciences. The dataset can be accessed through this link: https://doi.org/10.14278/rodare.2256
    corecore